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Abstract

In this article we present the results of a broad numerical investigation on the stabil-
ity of breather-type solutions of the nonlinear Schrödinger (NLS) equation, specifically
the one- and two-mode breathers for an unstable plane wave, which are frequently
used to model rogue waves. The numerical experiments involve large ensembles of5

perturbed initial data for six typical random perturbations. Ensemble estimates of the
“closeness”, A(t), of the perturbed solution to an element of the respective unperturbed
family indicate that the only neutrally stable breathers are the ones of maximal dimen-
sion, that is: given an unstable background with N unstable modes, the only neutrally
stable breathers are the N-dimensional ones (obtained as a superimposition of N sim-10

ple breathers via iterated Backlund transformations). Conversely, breathers which are
not fully saturated are sensitive to noisy environments and are unstable. Interestingly,
A(t) is smallest for the coalesced two-mode breather indicating the coalesced case
may be the most robust two-mode breather in a laboratory setting. The numerical sim-
ulations confirm and provide a realistic realization of the stability behavior established15

analytically by the authors.

1 Introduction

Interest in understanding rogue wave phenomena has been steadily growing for the
past decade, especially with current concerns over potential climate changes and their
affect on the likelihood and height of rogue waves. The focusing nonlinear Schrödinger20

(NLS) equation

iut +uxx +2|u|2u = 0, (1)

often appears in studies of rogue wave formation in deep water when wave ampli-
fication is assumed to be primarily due to nonlinear focusing and the modulational
instability. As a result, several classes of solutions of the NLS equation are considered25
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to be prototypes of rogue waves. For periodic boundary conditions, u(x +L, t) = u(x , t),
one such family is the family of homoclinic orbits of unstable plane waves with N un-
stable modes (Dysthe and Trulsen, 1999; Osborne et al., 2000; Calini and Schober,
2002; Akhmediev et al., 2009a). We will refer to these homoclinic orbits, which can
have M ≤ N modes excited, as M-mode spatially periodic breather (SPB) solutions5

(see Figs. 1 and 2). Time- periodic breather-type solutions as well as rational solutions
which arise as singular limits of breather-type solutions and which decay polynomially
in space and time have also been studied (Ankiewicz et al., 2010; Akhmediev et al.,
2009b; Ohta and Yang, 2012).

For modeling purposes, the issue of robustness of these families of solutions is im-10

portant. To successfully observe or reproduce rogue waves in a setting where noise
and small higher order nonlinear effects are inherent requires: (i) solutions to remain
close when there are small random variations initially and (ii) persistence in pertur-
bations of the NLS equation. In this article we take a closer look at the stability of the
one-mode SPBs over a plane wave with one or two unstable modes (UMs) and the two-15

mode SPBs over a plane wave with two UMs. In Sect. 2 we recall the basic elements
of the associated Floquet theory which allows for an exploration of the structure and
properties of the SPB solutions. Section 3, the focus of this paper, provides the results
of a broad numerical investigation of the stability of the SPBs with respect to a wide
range of initial perturbations fi (x). We consider (i) random shifts in the initial phase (ii)20

random spatial perturbations in the height of the wave, (iii) random noise, (iv) local-
ized random gaussian perturbations, and (v and vi) random high and low frequency
perturbations. For each type of SPB and for each fi (x) an ensemble of 100 numerical
experiments was carried out varying the random component in the initial data.

To study reproducibility/stability numerically, we first find the “closest” element of the25

family of SPBs to the perturbed solution. Varying the parameters of the family and us-
ing the H1-norm to measure distances, the closest element is found my minimizing the
maximum distance between the perturbed solution and the members of the family of
SPBs. Contour plots provide another diagnostic since they are visually intuitive and
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show when solutions stay structurally close to each other in “shape”. The ensemble
estimates of closeness, A(t), indicate that the only neutrally stable SPBs are those for
which all the instabilities of the underlying plane wave are saturated, e.g. the two-mode
SPB over a plane wave with two UMs. In the numerical simulations the perturbed SPBs
may develop a small spatial asymmetry due to the random perturbations. Interestingly,5

when considering the family of two-mode SPBs, A(t) is smallest for the coalesced
two-mode SPB since the spatial asymmetry is minimized. The authors studied the per-
sistence of one- and two-mode SPBs for several perturbed NLS models on a periodic
domain (Calini and Schober, 2002, 2009); numerical simulations and Melnikov argu-
ments indicated the persistence under perturbation of the coalesced two-mode SPB.10

These two observations indicate the coalesced case may be the most robust two-mode
SPB in a laboratory setting. Conversely, SPBs which are not fully saturated are sen-
sitive to noisy environments and are unstable. Finally, in Sect. 4 we outline our linear
stability analysis of the one- and two-mode SPBs which support the results of the nu-
merical investigation.15

2 Analytical background

In this section we provide the necessary elements of the associated Floquet spectral
theory to enable a study of the stability of the SPBs. The NLS equation is equivalent to
the consistency of the following Zakharov–Shabat linear system (Z–S) (Zakharov and
Shabat, 1972)20

L(x)v =
( ∂
∂x + iλ −u

u∗ ∂
∂x − iλ

)
v = 0

L(t)v =

(
∂
∂t − i(|u|2 −2λ2) −iux −2λu
−iu∗

x +2λu∗ ∂
∂t + i(|u|2 −2λ2)

)
v = 0, (2)
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where λ is the spectral parameter and u(x , t) is a solution of the NLS equation itself.
The spectrum of L(x) is defined by

σ(L(x)) := {λ ∈C|L(x)v = 0, |v| bounded ∀x}, (3)

and for u(x +L, t) = u(x , t) the spectrum is obtained using Floquet theory. Starting with
the monodromy matrix of Eq. (2), M(x ;u,λ), and letting ∆(u,λ) := trM(L;u,λ), the spec-5

trum is given by the following condition on the discriminant ∆(u,λ):

σ(L(x)) := {λ ∈C|∆(u,λ) ∈R,−2 ≤∆(u,λ) ≤ 2} . (4)

Of particular interest are the following elements of the periodic spectrum:

1. The simple spectrum, σs = {λs
j |∆(u,λ) = ±2, d∆/dλ 6= 0}.

2. Double points of the spectrum, σd = {λd
j |∆(u,λ) = ±2, d∆/dλ = 0, d2∆/dλ2 6= 0}.10

The spectrum of L(x) is invariant under the NLS flow and each periodic eigenvalue
determines the structure and dynamical stability of the corresponding nonlinear mode.
In particular there are no instabilities associated with λs

j or real λd
j , whereas linear

instabilities arise when the λd
j are complex.

To illustrate the relation between the number of complex λd
j and the number of insta-15

bilities, we consider the plane wave solution ua(t) = aei(2a2t+φ). For small perturbations
u(x , t) = ua(t)(1+ε(x , t)), |ε| � 1, ε satisfies

iεt +εxx +2|a|2(ε+ε∗) = 0. (5)

Thus ε ∝ eiµj x+σj t where µj = 2πj/L and σ2
j = µ2

j (4|a|2 −µ2
j ). The solution is unstable

if 0 < (jπ/L)2 < |a|2 and the number of unstable modes (UMs) is the largest integer20

M such that 0 <M < |a|L/π. On the other hand, the discriminant of the plane wave
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is ∆(a;λ) = 2cos(
√

a2 + λ2L). The discrete spectrum is given by λs
0 = ±ia and (λd

j )2 =

( jπ
L )2 −a2, j 6= 0. Notice that the λd

j are complex if 0 < (jπ/L)2 < |a|2 which is the same
condition for a mode to be linearly unstable.

2.1 SPBs over an unstable plane wave

Explicit representations for the SPBs can be constructed using the Bäcklund-gauge5

transformation for the NLS equation (see Sect. 4). For an unstable plane wave with N
UMs, a single Bäcklund transformation at a complex λd

j generates the one-mode SPB
family corresponding to the j th unstable mode,

U (j)(x , t ;ρ) =aei(2a2t+φ)

×
[
cos2pj − sinpj sech(ρ−σj t)cos(2πjx/L+β)10

+i sin2pj tanh(ρ−σj t)
]

×
[
1+ sinpj sech(ρ−σj t)cos(2πjx/L+β)

]−1
, (6)

The parameter ρ governs the time at which the mode becomes excited, βj is related
to spatial shifts in the solution, µj = 2πj/L, and pj = arccosπj/aL. The one-mode SPB15

limits to a phase translation of the plane wave as t →±∞ with the decay rate σj . For
example, Fig. 1a and b show the amplitudes of the two different one-mode SPBs,
U (1)(x , t ;ρ) and U (2)(x , t ;ρ), over an unstable plane wave with two UMs for a = 0.5,
L = 4

√
2π, ρ =φ = β = 0, and x ∈ [−L/2,L/2], t ∈ [−10,10]. The one-mode SPB over

an unstable plane wave with one UM has the same structure as in Fig. 1a, L is simply20

adjusted to allow for only one UM. In the next sections we show that the one-mode
SPB is neutrally stable and reproducible only when the underlying plane wave has one
UM.

To find a higher dimensional M-mode SBP (1 <M ≤ N) requires M iterations of the
the Bäcklund-gauge transformation (see Eq. 17) since at each step we also need to25
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know the corresponding eigenfunctions of the Lax pair. Each iteration of the trans-
formation introduces an additional parameter in the resulting solution. Applying the
Bäcklund-gauge transformation successively at complex λd

1 and λd
2 generates a two-

mode SPB family of the form (see Calini and Schober, 2002 for the exact formula):

U (1,2)(x , t ;ρ,τ) = ae2ia2t N(x , t ;ρ,τ)
D(x , t ;ρ,τ)

. (7)5

The amplitude of Eq. (7) is shown in Fig. 2a where the two spatial modes are distinct
with ρ = −2, τ = −5, a = 0.5, L = 4

√
2π, t ∈ [−10,10]. Figure 2a shows the two-mode

SPB can be thought of as a nonlinear superposition of two one-mode SPBs with spa-
tial modes cos(µ1x +β1) and cos(µ2x +β2). As before, as t →±∞ the 2-mode SPB
approaches a phase translation of the plane wave exponentially fast.10

The parameters ρ and τ determine the time at which the first and second mode,
respectively, become excited. Ultimately ρ and τ govern the shape, amplitude, and
steepness of the SPB since they can be adjusted to excite the modes at the same time
(ρ = −2, τ = −3). We refer to this case as the coalesced two-mode SPB, see Fig. 2b.
Surprisingly, as we will see in the next section, even though the coalesced two-mode15

SPB has steeper gradients, it can be more robust to random perturbations of the inital
data than a generic two-mode SPB.

3 Numerical evidence of stability

To integrate the NLS Eq. (1) with periodic boundary conditions we use a highly accurate
and efficient exponential integrator that uses Pade rational-function approximations to20

the exponential, a Fourier-mode decomposition in space and a fourth-order RK dis-
cretization in time (Khaliq et al., 2009). This scheme has extensively been tested with
a variety of known analytical solutions. For example, using N = 256 Fourier modes in
space and a timestep ∆t = 10−3, we find that the H1-norm of the difference between
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the analytical and numerical solutions is at most O(10−12). On the other hand, the er-
ror in the global invariants, the norm, the momentum and the Hamiltonian is at most
O(10−9).

For simplicity we examine the stability of the one- and two-mode SPB solutions. The
results are generalizable to the case of an M mode breather over an unstable plane5

wave with N ≥ M unstable modes (UMs). We start by letting

Uε(x ,0) = U (j)(x ,0;ρ)+εfi (x), j = 1,2 (8)

or

Uε(x ,0) = U (1,2)(x ,0;ρ,τ)+εfi (x), (9)

where ε should be on the order of experimental error, 0 < ε� 1. The parameters ρ and10

τ are selected so that U (j)(x ,0;ρ) or U (1,2)(x ,0;ρ,τ) are not too close to the unstable
plane wave in order to avoid exciting any of its instabilities. In all the numerical exper-
iments the perturbation parameter ε = 10−4 and the time frame is t ∈ [0,30]. There is
an inherent limitation to the time frame considered since for longer times the solutions
will enter a neighborhood of the plane wave.15

Three cases are under consideration: U (j)(x , t) over the plane wave with (i) N = 1
or (ii) N = 2 UMs and (iii) U (1,2)(x , t) over the plane wave with N = 2 UMs. If Uε(x , t)
remains close, in an appropriate sense to be discussed below, to an element of the
respective family, U (j)(x , t ;ρ)) or U (1,2)(x , t ;ρ,τ), then this indicates the SPB is neutrally
stable; otherwise it is unstable.20

In each of the three cases (i–iii) and for each of the following perturbations fi (x), i =
1, . . .,6, shown in Fig. 3, an ensemble of 100 numerical experiments was carried out by
varying the random component in the intial data:

a. f1(x) = cos2πk (x +φ)/L, k = 1,2 where φ ∈ [0,1] is a random shift in the phase;

b. f2(x) = r (x)cos2πkx/L,k = 1,2, where r (x) ∈ [0,1] is a spatially random perturba-25

tion in the height of the wave;
5094
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c. f3(x) = r (x) where r (x) ∈ [0,1] is random noise;

d. f4(x) =
∑J

k=1 rk (x)e−(x−xj )
2

, where rj (x) ∈ [0,1] are random fields. This represents
a set of localized gaussian perturbations about the points xj ;

e. f5(x) =
∑K

k=−K rk (x)ei2πkx/L for small K , where rk (x) ∈ [0,1] are random fields. This
gives a low frequency perturbation;5

f. f6(x) =
(∑−K+2

k=−K +
∑K

k=K−2

)
rk (x)ei2πkx/L for large K , where rk (x) ∈ [0,1] are ran-

dom fields. This gives a high frequency perturbation.

To study reproducibility/stability, in the numerical experiments we examine the evo-
lution of the norm of the difference of the perturbed solution with the closest element
of the unperturbed family. For example, in the case of a one-mode SPB, i.e. solution10

Eq. (6), we start with

H(j)(t ;ρ) = ||Uε(x , t)−U (j)(x , t ;ρ)||H1 . (10)

To determine the closest element of U (j)(x , t ;ρ) to the perturbed solution we let

H(j)
max(ρ) = maxt∈[0,30]H(j)(t ;ρ) (11)

and then determine the parameter value ρ∗ which minimizes H(j)
max(ρ), i.e15

H(j)
mm = minρH

(j)
max(ρ) =H(j)

max(ρ∗). (12)

As such, U (j)(x , t ;ρ∗) is the closest element and the evolution of H(j)(t ;ρ∗) provides
a measurement of how close the perturbed solution is to an element of the one-mode
SPBs. We estimate an ensemble measure of “closeness” using A(j)

i (t), the average of

H(j)(t ;ρ∗) over all 100 simulations, for each fi (note that ρ∗ is different for each simula-20

tion).
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We also use contour plots as a reproducibility/stability diagnostic since they are visu-
ally intuitive and show when solutions stay structurally close to each other in “shape”,
a feature which can’t be determined by examination of A(j)

i (t) alone. In the contour plots
we superimpose the contour of the amplitude obtained from the numerically generated
solution Uε(x , t) on that of the respective unperturbed analytical solution, U (j)(x , t ;ρ∗) or5

U (1,2)(x , t ;ρ∗,τ). Although we present only sample contour plots for the different cases,
the graphs of A(j)

i (t) provide the information obtained from the entire ensemble for each
perturbation fi . The numerical results consistently indicate that only the SPBs with all
the instabilities of the underlying plane wave staturated are neutrally stable.

Case one: We consider the one-mode SPB over a plane wave with one UM,10

Eq. (6) with j = 1, a = 0.5 and L = 2
√

2π. Figure 4a shows H(1)
max(ρ) for Uε(x ,0) =

U (1)(x ,0;ρ)+εf3(x). Note that H(1)
mm ∼ occurs at ρ∗ ∼ 5.04. The contours of |Uε(x , t)| and

of |U (1)(x , t ;ρ∗)|, the nearest one-mode SPB found by minimizing H(1)
max(ρ), are given in

Fig. 4b. Here, Uε(x , t) and the nearest SPB are visually identical. Figure 4c provides the

evolution of A(1)
i (t) for each random fi (x). The small growth in A(1)

i (t) to 10−3 at t ≈ 1115

for all fi (x) is due to a small spatial asymmetry which develops in the perturbed solution
due to the random nature of the fi (x). This growth is not significant – compare it to the

growth in A(1)
i (t) or A(2)

i (t) in Figs. 5 or 6 when the underlying plane wave has two UMs.

These results show the perturbed solution stays near to U (1)(x , t ;ρ∗) for a substantial
period of time, indicating the one-mode SPBs are neutrally stable when the underlying20

plane wave has only one mode.
Case two: Next we consider the one-mode SPB over a plane wave with two UMs,

Eq. (6) with j = 1,2, a = 0.5 and L = 4
√

2π. The contours of |Uε(x , t)| for Uε(x ,0) =
U (1)(x ,0;ρ)+εf1(x) (where k = 2 in f1(x)) and of |U (1)(x , t ;ρ∗)|, are given in Fig. 5a.

The closest one-mode SPB found by minimizing H(1)
max(ρ) matches only the first mode25

of the perturbed solution. A second mode is excited in the perturbed solution at t ≈ 20
which does not develop in any element of |U (1)(x , t ;ρ)|. In Fig. 5b the ensemble mea-
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sure of closeness, A(1)
i (t), shows rapid large growth to O(10) when this second mode

develops. This second mode is excited in Uε(x , t) for all random fi (x) and, in fact the

maximum of A(1)
i (t) is larger for the other perturbations. Figure 6a shows the corre-

sponding contours when Uε(x ,0) = U (2)(x ,0;ρ)+εf1(x) (for k = 1 in f1(x)). Similar rapid

growth in A(2)
i (t) is observed, Fig. 6b, indicating the one-mode SPBs are unstable over5

plane waves with N ≥ 2 UMs.
Case three: Finally we consider the two-mode SPB over a plane wave with two UMs,

expression (7) with i = 1, j = 2, a = 0.5 and L = 4
√

2π. In this case we need to find the
element of the family U (1,2)(x , t ;ρ,τ) closest to Uε(x , t). The parameters ρ and τ de-
termine the time when the first and second modes of the SPB become excited. We10

successively find ρ∗ and then τ∗, which minimize the differences of the first and sec-
ond developing modes between the perturbed and unpertubed solutions, respectively.
Generalizing, let

H(1,2)(t ;ρ∗,τ) = ||Uε(x , t)−U (1,2)(x , t ;ρ∗,τ)||H1 (13)

To determine the closest element of U (1,2)(x , t ;ρ∗,τ) to the perturbed solution we let15

H(1,2)
max (ρ∗,τ) = maxt∈[0,30]H(1,2)(t ;ρ∗,τ) (14)

and then determine the unique τ∗ which minimizes H(1,2)
max (ρ∗,τ), i.e

H(1,2)
mm = minτH

(1,2)
max (ρ∗,τ) =H(1,2)

max (ρ∗,τ∗). (15)

As before, the ensemble measure of closeness, A(1,2)
i (t), is the average of

H(1,2)(t ;ρ∗,τ∗) over all 100 simulations for each fi .20

Figure 7a and b show H(1,2)
max (ρ∗,τ) for initial data (Eq. 9) with fi (x) = f4(x) and fi (x) =

f5(x), respectively. In Fig. 7a H(1,2)
mm ∼ 0.0091 at τ∗ ∼ −10.44 and in Fig. 7b H(1,2)

mm ∼
0.2068 at τ∗ ∼ −10.06. Figure 8 provides the contours of the perturbed solution for
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fi (x) = f4(x) along with (a) U (1,2)(x , t ;ρ∗,τ0) where the first mode has been matched
using ρ∗ and τ is kept at it’s original value τ0 and (b) U (1,2)(x , t ;ρ∗,τ∗), the nearest

two-mode SPB found by minimizing H(1,2)
max (ρ∗,τ). Similarly, Fig. 9 shows the contours

when fi (x) = f5(x). Here, the nearest two-mode SPB found by minimizing H(1,2)
max (ρ∗,τ),

produces a match only in time. The perturbation introduces spatial asymmetry that5

cannot be ameliorated by the matching procedure. Figure 10 provides the evolution
of A(1,2)

i (t). There is larger growth in A(1,2)
i (t) than in A(1)

i (t) for the one-mode SPB
over a plane wave with UM since the spatial asymmetry has the opportunity to further
develop with the second mode appearing at t ≈ 20.

There is a larger variance in H(1,2)
mm ; this can be seen in Table 1 where we provide the10

minimum, mean, median and maximum of H(1,2)
mm over the entire ensemble of experi-

ments for each fi . We find H(1,2)
mm is at most O(10−1) (obtained with the random phase

f1), with all other fi yielding smaller asymmetries and f6, the random high frequency
perturbation, yielding the smallest. One may ask whether the observed spatial asym-
metry can be captured explicitly by finding the solutions of Eq. (5) since, for random15

variations in the data, the squared eigenfunctions will no longer be centered about the
origin. Since A(1,2)

i (t) grows to at most O(10−1), Uε(x , t) stays near to U (1,2)(x , t ;ρ∗,τ∗)
for a substantial period of time, i.e. the two-mode SPB over a plane wave with two UMs
is neutrally stable.

Figure 11 shows the special case of a perturbed coalesced two-mode SPB over20

a plane wave with two UMs (recall Fig. 2b). The ensemble closeness measurement
A(1,2)

i (t) is significantly smaller than in the generic two-mode SPB case (compare

Figs. 11b and 10) and is on the order of A(1)
i (t). In this case Uε(x , t) stays nearer

to U (1,2)(x , t ;ρ∗,τ∗) since the coalesced modes appear together earlier in time and as
such Uε(x , t) is not as susceptible to growth in spatial asymmetries. Surprisingly, the25

coalesced two-mode SPB appears to also be more robust under certain types of per-
turbations of the NLS equation (Calini and Schober, 2002). These two observations
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indicate that the coalesced case may be the most robust two-mode SPB in a labora-
tory setting.

4 Squared eigenfunctions and linear stability

To support the results of the numerical investigation this section provides an outline of
our linear stability analysis of the one- and two-mode SPB solutions (see Calini and5

Schober, 2013). The key step in the analysis is to note that for a solution u(x , t) of the
NLS equation, e.g. one of the SPBs, its corresponding “squared eigenfunctions” satisfy
the linearized equation about u(x , t), i.e. Eq. (5) with ua(x , t) replaced by a general
u(x , t). In particular, for a one-mode SPB, if φ and ψ satisfy the Z–S system (Eq. 2) for
U (j)(x , t), then f (x , t) =φ1ψ1 + φ̄2ψ̄2 and g(x , t) = i(φ1ψ1 − φ̄2ψ̄2) solve Eq. (5). Thus,10

determining stability becomes simply a question of examining the behavior in time of
f (x , t) and g(x , t).

The Bäcklund-gauge transformation (Sattinger and Zurkowski, 1987) allows one to
transform both the base solution u(x , t) and its eigenfunctions, while maintaining spatial
periodicity, as follows: Let φ := α+φ

+ +α−φ
−, α± ∈C, where φ+, φ− independently15

solve the Z–S system at (u,λj ), where λj is one of the complex λd
j . The gauge matrix is

given by

G(λ;λj ,φ) =

λ− λj
|φ1 |

2−|φ2 |
2

|φ1 |2+|φ2 |2
−λj

2φ1φ̄2

|φ1 |2+|φ2 |2

−λj
2φ̄1φ2

|φ1 |2+|φ2 |2
λ+ λj

|φ1 |
2−|φ2 |

2

|φ1 |2+|φ2 |2

 .

Then

φ(j)(x , t ,λ;λj ) = G(λ;λj ,φ)φ(x , t ,λ) (16)20
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solves the Z–S system (Eq. 2) at (U (j)(x , t),λ), where

U (j)(x , t) = u +2(λj − λ̄j )
φ1φ̄2

|φ1|2 + |φ2|2
(17)

is the new NLS solution. Notationally, the number of superscripts implies the number of
times the transformatin has been applied, while the value of the superscript j indicates
which λj is used in the transformation.5

When the base solution is an unstable plane wave, for each complex λd
j , the new so-

lution U (j)(x , t) is the one-mode SPB over the plane wave corresponding to the j th UM.
Iterating the Bäcklund-gauge transformation provides a two-mode SPB, for example,
U (1,2)(x , t) and it’s corresponding eigenfunctions. Since we are interested in the stabil-
ity of the SPBs so we focus only on the form of the transformed eigenfunctions. The10

independent eigenfunctions corresponding to the plane wave are, for k (λ) =
√
λ2 +a2,

φ±(x , t ;λ) =
e∓iπ/4

2k (λ)

( √
a (k (λ)± λ)eia2t

±
√

a(k (λ)∓ λ)e−ia2t

)
×e±i(k (λ)x+2λk (λ)t).

If the plane wave has only one UM corresponding to complex λd
1, the elements of15

G(λ;λj ,φ) are bounded in time since

|φ1|
2 − |φ2|

2

|φ1|2 + |φ2|2
=

cosp sin(2kx +β)

cosh(ρ−σt)+ sinp cos(2kx +β)
,

2φ1φ̄2

|φ1|2 + |φ2|2
=aeia2t

× [cosp sinh(ρ−σt)+ i sinp cosh(ρ−σt)
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+ i cos(2kx +β)]

× [cosh(ρ−σt)+ sinp cos(2kx +β)]−1, (18)

where µ1 = 2k (λ1) = 2π/L . From these expressions we see the only possible source of
exponential growth from f (x , t) and g(x , t) are those formed using the following eigen-5

functions

χ±(x , t ;λ1) = G(λ;λ1,φ)φ±(x , t ;λ)|λ=λ1
.

It is sufficient to examine the behavior of χ+ since χ± are linearly dependent at λ = λ1.
We find χ+(x , t ;λ1) does not grow exponentially as

χ+(x , t ;λ1) ∼

 φ̄2

|φ1 |2+|φ2 |2−φ1

|φ1 |2+|φ2 |2

 ,10

with

φ1

|φ1|2 + |φ2|2
∼
[

e
i
(
π
L x+ β

2 +
p
2

)
e−(σt−ρ)/2

+ i e
−i
(
π
L x+ β

2 +
p
2

)
e(σt−ρ)/2

]
×
[

cosh(ρ−σt)+ sinp cos
(

2π
L

x +β
)]−1

,
15

Likewise, the first component is also bounded in time. Thus the solutions to the lin-
earized equation, f (x , t) and g(x , t), are bounded in time. As a result we find the Bäck-
lund transformation at λ1 saturates the corresponding UM of the plane wave and the
one-mode SPB is neutrally stable when the underlying plane wave has only one UM.

Similarly, if the plane wave has only two unstable modes then iterating the Bäcklund20

transformations at the associated spectral elements λ1 and λ2 will saturate the linear
5101
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instabilities of the corresponding UMS of the plane wave. Thus the two-mode SPBs
over a plane wave with two UMS, U (1,2)(x , t ;ρ,τ), are neutrally stable.

However, a one-mode SPB over the plane wave with 2 unstable modes can be shown
to be linearly unstable. In this case, if U (1)(x , t ;ρ) is produced by applying transforma-
tion (Eq. 17) at λ1 then the two corresponding eigenfuctions χ±(x , t ;λ) are linearly in-5

dependent at λ = λ2 and exhibit exponential growth in time, i.e., the first component is
of the form

χ±
1 (x , t ;λ2) ∼ exp

(
±σt

2

)
·B±(x , t),

where B±(x , t) are bounded and σ is real, σ = −4iλ2k (λ2). In this case f (x , t) and g(x , t)
grow exponentially fast and U (1)(x , t ;ρ) is linearly unstable. These results indicate that10

only those SPBs for which all the instabilities of the underlying plane wave are saturated
are neutrally stable.
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Foundation through grants DMS-1109017 and DMS-1108973.
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Table 1. The minimum, mean, median and maximum of H(1,2)
mm obtained in the ensemble of 100

experiments for each fi .

fi Minimum Mean Median Maximum

f1 1.7616×10−7 6.5183×10−3 2.9831×10−5 2.1138×10−1

f2 6.2504×10−7 2.2224×10−3 1.2596×10−5 1.1811×10−1

f3 1.3286×10−6 3.5547×10−3 3.1829×10−5 2.6490×10−1

f4 2.1195×10−7 1.2651×10−3 1.2519×10−5 7.4857×10−2

f5 2.8895×10−7 6.1313×10−4 7.2525×10−6 2.9186×10−2

f6 2.9967×10−7 4.2785×10−4 2.8146×10−6 2.8567×10−2
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Fig. 1. Amplitude of a one-mode SPB over an unstable plane wave with two UMs: (a) U (1)(x , t ;ρ)
and (b) U (2)(x , t ;ρ).
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Fig. 2. Amplitude plots of the two-mode SPB over a plane wave with two UMs when the modes
are (a) distinct and (b) coalesced.
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Fig. 3. Initial periodic perturbations fi , i = 1, . . .,6.
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C M Schober: Numerical study of stability of breathers 5

the average ofH(j)(t;ρ∗) over all 100 simulations, for each
fi (note thatρ∗ is different for each simulation).

We also use contour plots as a reproducibility/stability di-
agnostic since they are visually intuitive and show when so-
lutions stay structurally close to each other in “shape”, a fea-
ture which can’t be determined by examination ofA(j)

i (t)
alone. In the contour plots we superimpose the contour of the
amplitude obtained from the numerically generated solution
Uǫ(x,t) on that of the respective unperturbed analytical solu-
tion,U (j)(x,t;ρ∗) orU (1,2)(x,t;ρ∗, τ). Although we present
only sample contour plots for the different cases, the graphs
of A(j)

i (t) provide the information obtained from the entire
ensemble for each perturbationfi. The numerical results con-
sistently indicate that only the SPBs with all the instabilities
of the underlying plane wave staturated are neutrally stable.

Case one:We consider the one-mode SPB over a plane
wave with one UM, equation (6) withj = 1, a= 0.5 and
L= 2

√
2π. Figure (4a) showsH(1)

max(ρ) for Uǫ(x,0) =

U (1)(x,0;ρ)+ǫf3(x). Note thatH(1)
mm ∼ occurs atρ∗ ∼ 5.04.

The contours of|Uǫ(x,t)| and of|U (1)(x,t;ρ∗)|, the nearest

one-mode SPB found by minimizingH(1)
max(ρ), are given in

Figure (4b). Here,Uǫ(x,t) and the nearest SPB are visually

identical. Figure (4c) provides the evolution ofA(1)
i (t) for

each randomfi(x). The small growth inA(1)
i (t) to 10−3 at

t≈ 11 for all fi(x) is due to a small spatial asymmetry which
develops in the perturbed solution due to the random nature
of thefi(x). This growth is not significant – compare it to the

growth inA(1)
i (t) or A(2)

i (t) in Figures (5) or (6) when the
underlying plane wave has two UMs. These results show the
perturbed solution stays near toU (1)(x,t;ρ∗) for a substan-
tial period of time, indicating the one-mode SPBs are neu-
trally stable when the underlying plane wave has only one
mode.

Case two: Next we consider the one-mode SPB over
a plane wave with two UMs, equation (6) withj = 1,2,
a= 0.5 and L= 4

√
2π. The contours of|Uǫ(x,t)| for

Uǫ(x,0) = U (1)(x,0;ρ)+ ǫf1(x) (wherek = 2 in f1(x)) and
of |U (1)(x,t;ρ∗)|, are given in Figure (5a). The closest one-

mode SPB found by minimizingH(1)
max(ρ) matches only the

first mode of the perturbed solution. A second mode is ex-
cited in the perturbed solution att≈ 20 which does not de-
velop in any element of|U (1)(x,t;ρ)|. In Figure (5b) the

ensemble measure of closeness,A(1)
i (t), shows rapid large

growth toO(10) when this second mode develops. This sec-
ond mode is excited inUǫ(x,t) for all randomfi(x) and, in

fact the maximum ofA(1)
i (t) is larger for the other pertur-

bations. Figure (6a) shows the corresponding contours when
Uǫ(x,0) = U (2)(x,0;ρ)+ ǫf1(x) (for k = 1 in f1(x)). Simi-

lar rapid growth inA(2)
i (t) is observed, Figure (6b), indicat-

ing the one-mode SPBs are unstable over plane waves with
N ≥ 2 UMs.
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Fig. 4: (a)H(1)
max(ρ) (b) Contours of|Uǫ(x,t)| (dashed line)

and the one-mode SPB|U (1)(x,t;ρ∗)| (solid line) over a

plane wave with one UM. (c) Evolution ofA(1)
i (t) for each

fi.

Fig. 4. (a) H(1)
max(ρ) (b) contours of |Uε(x , t)| (dashed line) and the one-mode SPB |U (1)(x , t ;ρ∗)|

(solid line) over (a) plane wave with one UM. (c) Evolution of A(1)
i (t) for each fi .
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Fig. 5: (a) Contours of|Uǫ(x,t)| (dashed line) and the one-
mode SPB|U (1)(x,t;ρ∗)| (solid line) over a plane wave with

two UMs. (b) Evolution ofA(1)
i (t) for eachfi.

fi Minimum Mean Median Maximum
f1 1.7616e-07 6.5183e-03 2.9831e-05 2.1138e-01
f2 6.2504e-07 2.2224e-03 1.2596e-05 1.1811e-01
f3 1.3286e-06 3.5547e-03 3.1829e-05 2.6490e-01
f4 2.1195e-07 1.2651e-03 1.2519e-05 7.4857e-02
f5 2.8895e-07 6.1313e-04 7.2525e-06 2.9186e-02
f6 2.9967e-07 4.2785e-04 2.8146e-06 2.8567e-02

Table 1: The minimum, mean, median and maximum of
H(1,2)

mm obtained in the ensemble of 100 experiments for each
fi.
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Fig. 6: (a) Contours of|Uǫ(x,t)| (dashed line) and the one-
mode SPB|U (2)(x,t;ρ∗)| (solid line) over a plane wave with

two UMs. (b) Evolution ofA(2)
i (t) for eachfi.

Case three:Finally we consider the two-mode SPB over a
plane wave with two UMs, expression (7) withi= 1, j = 2,
a= 0.5 andL= 4

√
2π. In this case we need to find the el-

ement of the familyU (1,2)(x,t;ρ,τ) closest toUǫ(x,t). The
parametersρ andτ determine the time when the first and sec-
ond modes of the SPB become excited. We successively find
ρ∗ and thenτ∗, which minimize the differences of the first
and second developing modes between the perturbed and un-
pertubed solutions, respectively. Generalizing, let

H(1,2)(t;ρ∗, τ) = ||Uǫ(x,t)−U (1,2)(x,t;ρ∗, τ)||H1 (13)

To determine the closest element ofU (1,2)(x,t;ρ∗, τ) to the
perturbed solution we let

H(1,2)
max (ρ

∗, τ) = maxt∈[0,30]H(1,2)(t;ρ∗, τ) (14)

and then determine the uniqueτ∗ which minimizes
H(1,2)

max (ρ∗, τ), i.e

H(1,2)
mm = minτH(1,2)

max (ρ
∗, τ) =H(1,2)

max (ρ
∗, τ∗). (15)

Fig. 5. (a) Contours of |Uε(x , t)| (dashed line) and the one-mode SPB |U (1)(x , t ;ρ∗)| (solid line)
over a plane wave with two UMs. (b) Evolution of A(1)

i (t) for each fi .
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Fig. 5: (a) Contours of|Uǫ(x,t)| (dashed line) and the one-
mode SPB|U (1)(x,t;ρ∗)| (solid line) over a plane wave with

two UMs. (b) Evolution ofA(1)
i (t) for eachfi.

fi Minimum Mean Median Maximum
f1 1.7616e-07 6.5183e-03 2.9831e-05 2.1138e-01
f2 6.2504e-07 2.2224e-03 1.2596e-05 1.1811e-01
f3 1.3286e-06 3.5547e-03 3.1829e-05 2.6490e-01
f4 2.1195e-07 1.2651e-03 1.2519e-05 7.4857e-02
f5 2.8895e-07 6.1313e-04 7.2525e-06 2.9186e-02
f6 2.9967e-07 4.2785e-04 2.8146e-06 2.8567e-02

Table 1: The minimum, mean, median and maximum of
H(1,2)

mm obtained in the ensemble of 100 experiments for each
fi.
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Fig. 6: (a) Contours of|Uǫ(x,t)| (dashed line) and the one-
mode SPB|U (2)(x,t;ρ∗)| (solid line) over a plane wave with

two UMs. (b) Evolution ofA(2)
i (t) for eachfi.

Case three:Finally we consider the two-mode SPB over a
plane wave with two UMs, expression (7) withi= 1, j = 2,
a= 0.5 andL= 4

√
2π. In this case we need to find the el-

ement of the familyU (1,2)(x,t;ρ,τ) closest toUǫ(x,t). The
parametersρ andτ determine the time when the first and sec-
ond modes of the SPB become excited. We successively find
ρ∗ and thenτ∗, which minimize the differences of the first
and second developing modes between the perturbed and un-
pertubed solutions, respectively. Generalizing, let

H(1,2)(t;ρ∗, τ) = ||Uǫ(x,t)−U (1,2)(x,t;ρ∗, τ)||H1 (13)

To determine the closest element ofU (1,2)(x,t;ρ∗, τ) to the
perturbed solution we let

H(1,2)
max (ρ

∗, τ) = maxt∈[0,30]H(1,2)(t;ρ∗, τ) (14)

and then determine the uniqueτ∗ which minimizes
H(1,2)

max (ρ∗, τ), i.e

H(1,2)
mm = minτH(1,2)

max (ρ
∗, τ) =H(1,2)

max (ρ
∗, τ∗). (15)

Fig. 6. (a) Contours of |Uε(x , t)| (dashed line) and the one-mode SPB |U (2)(x , t ;ρ∗)| (solid line)
over a plane wave with two UMs. (b) Evolution of A(2)

i (t) for each fi .
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Fig. 7: H(1,2)
max (ρ∗, τ) for (a) f4(x) and (b)f5(x). H(1,2)

mm is
∼ 0.0091 and∼ 0.2068, respectively.

As before, the ensemble measure of closeness,A(1,2)
i (t), is

the average ofH(1,2)(t;ρ∗, τ∗) over all 100 simulations for
eachfi.

Figures (7a-b) showH(1,2)
max (ρ∗, τ) for initial data (9) with

fi(x) = f4(x) andfi(x) = f5(x), respectively. In Figure (7a)

H(1,2)
mm ∼ 0.0091 at τ∗ ∼−10.44 and in Figure (7b)H(1,2)

mm

∼ 0.2068 at τ∗ ∼−10.06. Figure (8) provides the contours
of the perturbed solution forfi(x) = f4(x) along with (a)
U (1,2)(x,t;ρ∗, τ0) where the first mode has been matched
using ρ∗ and τ is kept at it’s original valueτ0 and (b)
U (1,2)(x,t;ρ∗, τ∗), the nearest two-mode SPB found by min-

imizing H(1,2)
max(ρ∗, τ). Similarly, Figure (9) shows the con-

tours whenfi(x) = f5(x). Here, the nearest two-mode SPB
found by minimizingH(1,2)

max (ρ∗, τ), produces a match only in
time. The perturbation introduces spatial asymmetry that can-
not be ameliorated by the matching procedure. Figure ( 10)
provides the evolution ofA(1,2)

i (t). There is larger growth in

A(1,2)
i (t) than inA(1)

i (t) for the one-mode SPB over a plane
wave with UM since the spatial asymmetry has the oppor-
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Fig. 8: (a) Contours of |Uǫ(x,t)| for f4(x) (dashed
line) and the two-mode SPB (solid line) given by (a)
|U (1,2)(x,t;ρ∗, τ0)|, and (b)|U (1,2)(x,t;ρ∗, τ∗)|.

tunity to further develop with the second mode appearing at
t≈ 20.

There is a larger variance inH(1,2)
mm ; this can be seen in Ta-

ble (1) where we provide the minimum, mean, median and
maximum ofH(1,2)

mm over the entire ensemble of experiments
for eachfi. We findH(1,2)

mm is at mostO
(

10−1
)

(obtained
with the random phasef1), with all otherfi yielding smaller
asymmetries andf6, the random high frequency perturbation,
yielding the smallest. One may ask whether the observed spa-
tial asymmetry can be captured explicitly by finding the so-
lutions of equation (5) since, for random variations in the
data, the squared eigenfunctions will no longer be centered
about the origin. SinceA(1,2)

i (t) grows to at mostO
(

10−1
)

,
Uǫ(x,t) stays near toU (1,2)(x,t;ρ∗, τ∗) for a substantial pe-
riod of time, i.e. the two-mode SPB over a plane wave with
two UMs is neutrally stable.

Figure (11) shows the special case of a perturbed coa-
lesced two-mode SPB over a plane wave with two UMs

Fig. 7. H(1,2)
max (ρ∗,τ) for (a) f4(x) and (b) f5(x). H(1,2)

mm is ∼ 0.0091 and ∼ 0.2068, respectively.

5111

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5087/2013/nhessd-1-5087-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5087/2013/nhessd-1-5087-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5087–5115, 2013

Numerical study of
stability of breathers

A. Calini and
C. M. Schober

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C M Schober: Numerical study of stability of breathers 7

−11 −10.9 −10.8 −10.7 −10.6 −10.5 −10.4 −10.3 −10.2 −10.1 −10
0

0.5

1

1.5

2

2.5

3

3.5

4

τ

H
m

ax
(1

,2
)

(a)

−11 −10.9 −10.8 −10.7 −10.6 −10.5 −10.4 −10.3 −10.2 −10.1 −10
0

1

2

3

4

5

6

7

8

9

τ

H
m

ax
(1

)

(b)

Fig. 7: H(1,2)
max (ρ∗, τ) for (a) f4(x) and (b)f5(x). H(1,2)

mm is
∼ 0.0091 and∼ 0.2068, respectively.

As before, the ensemble measure of closeness,A(1,2)
i (t), is

the average ofH(1,2)(t;ρ∗, τ∗) over all 100 simulations for
eachfi.

Figures (7a-b) showH(1,2)
max (ρ∗, τ) for initial data (9) with

fi(x) = f4(x) andfi(x) = f5(x), respectively. In Figure (7a)

H(1,2)
mm ∼ 0.0091 at τ∗ ∼−10.44 and in Figure (7b)H(1,2)

mm

∼ 0.2068 at τ∗ ∼−10.06. Figure (8) provides the contours
of the perturbed solution forfi(x) = f4(x) along with (a)
U (1,2)(x,t;ρ∗, τ0) where the first mode has been matched
using ρ∗ and τ is kept at it’s original valueτ0 and (b)
U (1,2)(x,t;ρ∗, τ∗), the nearest two-mode SPB found by min-

imizing H(1,2)
max(ρ∗, τ). Similarly, Figure (9) shows the con-

tours whenfi(x) = f5(x). Here, the nearest two-mode SPB
found by minimizingH(1,2)

max (ρ∗, τ), produces a match only in
time. The perturbation introduces spatial asymmetry that can-
not be ameliorated by the matching procedure. Figure ( 10)
provides the evolution ofA(1,2)

i (t). There is larger growth in

A(1,2)
i (t) than inA(1)

i (t) for the one-mode SPB over a plane
wave with UM since the spatial asymmetry has the oppor-
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Fig. 8: (a) Contours of |Uǫ(x,t)| for f4(x) (dashed
line) and the two-mode SPB (solid line) given by (a)
|U (1,2)(x,t;ρ∗, τ0)|, and (b)|U (1,2)(x,t;ρ∗, τ∗)|.

tunity to further develop with the second mode appearing at
t≈ 20.

There is a larger variance inH(1,2)
mm ; this can be seen in Ta-

ble (1) where we provide the minimum, mean, median and
maximum ofH(1,2)

mm over the entire ensemble of experiments
for eachfi. We findH(1,2)

mm is at mostO
(

10−1
)

(obtained
with the random phasef1), with all otherfi yielding smaller
asymmetries andf6, the random high frequency perturbation,
yielding the smallest. One may ask whether the observed spa-
tial asymmetry can be captured explicitly by finding the so-
lutions of equation (5) since, for random variations in the
data, the squared eigenfunctions will no longer be centered
about the origin. SinceA(1,2)

i (t) grows to at mostO
(

10−1
)

,
Uǫ(x,t) stays near toU (1,2)(x,t;ρ∗, τ∗) for a substantial pe-
riod of time, i.e. the two-mode SPB over a plane wave with
two UMs is neutrally stable.

Figure (11) shows the special case of a perturbed coa-
lesced two-mode SPB over a plane wave with two UMs

Fig. 8. (a) Contours of |Uε(x , t)| for f4(x) (dashed line) and the two-mode SPB (solid line) given
by (a) |U (1,2)(x , t ;ρ∗,τ0)|, and (b) |U (1,2)(x , t ;ρ∗,τ∗)|.
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Fig. 9: Contours of|Uǫ(x,t)| for f5(x) (dashed line) and the
two-mode SPB (solid line) given by (a)|U (1,2)(x,t;ρ∗, τ0)|,
and (b)|U (1,2)(x,t;ρ∗, τ∗)|.
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Fig. 10: Evolution ofA(1,2)
i (t) for eachfi.
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Fig. 11: (a) Contours of|Uǫ(x,t)| in the coalesced
case for f5(x) (dashed line) and of the two-mode
SPB |U (1,2)(x,t;ρ∗, τ∗)| (solid line) given by (a)

|U (1,2)(x,t;ρ∗, τ∗)|, and (b) Evolution of A(2)
i (t) for

eachfi.

(recall Figure (2b)). The ensemble closeness measurement
A(1,2)

i (t) is significantly smaller than in the generic two-
mode SPB case (compare Figures (11b) and (10)) and is
on the order ofA(1)

i (t). In this caseUǫ(x,t) stays nearer
to U (1,2)(x,t;ρ∗, τ∗) since the coalesced modes appear to-
gether earlier in time and as suchUǫ(x,t) is not as susceptible
to growth in spatial asymmetries. Surprisingly, the coalesced
two-mode SPB appears to also be more robust under certain
types of perturbations of the NLS equation Calini & Schober
(2002). These two observations indicate that the coalesced
case may be the most robust two-mode SPB in a laboratory
setting.

Fig. 9. Contours of |Uε(x , t)| for f5(x) (dashed line) and the two-mode SPB (solid line) given by
(a) |U (1,2)(x , t ;ρ∗,τ0)|, and (b) |U (1,2)(x , t ;ρ∗,τ∗)|.
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Fig. 9: Contours of|Uǫ(x,t)| for f5(x) (dashed line) and the
two-mode SPB (solid line) given by (a)|U (1,2)(x,t;ρ∗, τ0)|,
and (b)|U (1,2)(x,t;ρ∗, τ∗)|.
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Fig. 10: Evolution ofA(1,2)
i (t) for eachfi.
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Fig. 11: (a) Contours of|Uǫ(x,t)| in the coalesced
case for f5(x) (dashed line) and of the two-mode
SPB |U (1,2)(x,t;ρ∗, τ∗)| (solid line) given by (a)

|U (1,2)(x,t;ρ∗, τ∗)|, and (b) Evolution of A(2)
i (t) for

eachfi.

(recall Figure (2b)). The ensemble closeness measurement
A(1,2)

i (t) is significantly smaller than in the generic two-
mode SPB case (compare Figures (11b) and (10)) and is
on the order ofA(1)

i (t). In this caseUǫ(x,t) stays nearer
to U (1,2)(x,t;ρ∗, τ∗) since the coalesced modes appear to-
gether earlier in time and as suchUǫ(x,t) is not as susceptible
to growth in spatial asymmetries. Surprisingly, the coalesced
two-mode SPB appears to also be more robust under certain
types of perturbations of the NLS equation Calini & Schober
(2002). These two observations indicate that the coalesced
case may be the most robust two-mode SPB in a laboratory
setting.

Fig. 10. Evolution of A(1,2)
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Fig. 9: Contours of|Uǫ(x,t)| for f5(x) (dashed line) and the
two-mode SPB (solid line) given by (a)|U (1,2)(x,t;ρ∗, τ0)|,
and (b)|U (1,2)(x,t;ρ∗, τ∗)|.
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Fig. 11: (a) Contours of|Uǫ(x,t)| in the coalesced
case for f5(x) (dashed line) and of the two-mode
SPB |U (1,2)(x,t;ρ∗, τ∗)| (solid line) given by (a)

|U (1,2)(x,t;ρ∗, τ∗)|, and (b) Evolution of A(2)
i (t) for

eachfi.

(recall Figure (2b)). The ensemble closeness measurement
A(1,2)

i (t) is significantly smaller than in the generic two-
mode SPB case (compare Figures (11b) and (10)) and is
on the order ofA(1)

i (t). In this caseUǫ(x,t) stays nearer
to U (1,2)(x,t;ρ∗, τ∗) since the coalesced modes appear to-
gether earlier in time and as suchUǫ(x,t) is not as susceptible
to growth in spatial asymmetries. Surprisingly, the coalesced
two-mode SPB appears to also be more robust under certain
types of perturbations of the NLS equation Calini & Schober
(2002). These two observations indicate that the coalesced
case may be the most robust two-mode SPB in a laboratory
setting.

Fig. 11. (a) Contours of |Uε(x , t)| in the coalesced case for f5(x) (dashed line) and of the two-
mode SPB |U (1,2)(x , t ;ρ∗,τ∗)| (solid line) given by (a) |U (1,2)(x , t ;ρ∗,τ∗)|, and (b) evolution of A(2)

i (t)
for each fi .
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